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Abstract. In this paper, a modified SQP method with nonmonotone line search technique is presen-
ted based on the modified quadratic subproblem proposed in Zhou (1997) and the nonmonotone
line search technique. This algorithm starts from an arbitrary initial point, adjusts penalty parameter
automatically and can overcome the Maratos effect. What is more, the subproblem is feasible at each
iterate point. The global and local superlinear convergence properties are obtained under certain
conditions.
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1. Introduction

We consider the following constrained optimization problem:

min
x∈Rn f (x)

s.t. g(x) � 0
(1)

where f : Rn → R, g : Rn → Rm are continuously differentiable functions. There
are many practical methods for solving (1) such as gradient projection method, trust
region method and SQP method. Among these methods, SQP method is an import-
ant one. SQP method is to generate iteratively a sequence {xk} which converges to
a K–T point of the problem (1) by solving the following quadratic subproblem

min
d∈Rn ∇f (xk)T d + 1

2d
THkd

s.t. g(xk)+ g′(xk)d � 0
(2)

where Hk ∈ Rn×n is a symmetric positive definite matrix. The iterate formation is
as follows

xk+1 = xk + tkdk

where dk is the solution of (2) and tk is the step-size chosen by some line search to
reduce the value of a merit function for (1).
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SQP method is one of the most effective methods for solving nonlinear pro-
gramming. Many papers contributed to this method, such as Boggs et al. (1982),
Bonnons et al. (1992), Han (1976), Han (1977), Powell (1978) and Powell (1982)
to name a few. But there are a lot of theoretic and practical problems which are
still actively investigated. Especially if the quadratic subproblem (2) is infeasible
or the solutions of the sequential quadratic subproblem are unbounded, the SQP
method fails or generates a sequence which diverges. Because of this, Burke and
Han (1989), Zhou (1997) modified the quadratic subproblem respectively to en-
sure that the subproblem is feasible at each iterate point, and proved that their
methods are globally convergent. However, Han and Burke’s method is only a
conceptual method and can not be implementable practically. Zhou’s method can
be implemented in practice, but its global convergence is obtained under exact line
search.

In 1978, Maratos (1978) pointed out that for SQP method, the unit step-size can
not be accepted although the iterate points are close enough to the optimum of the
problem (1) when the non-differentiable exact penalty function is used as the merit
function and the solution of (2) is used as the search direction. This phenomenon is
named as Maratos effect. For this difficulty, there are two techniques to circumvent
it: Watchdog technique (Chamberlin et al., 1982) and Second–order correction
technique (Mayne and Polak, 1982). Watchdog technique needs much estimation
of the value of functions and their gradients, and Second–order technique needs to
solve an additional quadratic subproblem or linear equation system at each iterate
point. This is time-consuming.

Bonnons et al. (1992) and Panier and Titts (1991) proposed a SQP method
with nonmonotone line search by using the nonmonotone line search technique
proposed in Grippo et al. (1986) on the SQP method. This method needs only to
solve an additional quadratic subproblem or linear equation system within finite
number of iterates. Hence it overcomes the Maratos effect with less computation.

In this paper, a modified SQP method is proposed by combining the subproblem
proposed in Zhou (1997) and nonmonotone line search technique. The method has
the following merits: starts from an arbitrary initial point, automatically adjusts
penalty parameter, the subproblem is feasible at each iterate point, and needs to
solve an additional linear equation system within finite number of iterates hence
overcomes the Maratos effect with less computation. Under very mild conditions,
its global convergence and local superlinear convergence are obtained.

This paper is organized as follows. In Section 2, some definitions and lemmas
are given. Section 3 states the algorithm model. The global convergence of the
proposed algorithm is presented in Section 4. In Section 5, we study the local super-
linear convergence of the proposed algorithm, and some discussions and numerical
examples are given in the last section.

The symbols we use in this paper are standard. For convenience, we list some
of them as follows:

(1) f ′(x, d) = lim
λ↓0
(f (x + λd)− f (x))/λ;
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(2) g′(x) is Frechet derivative of g at x;
(3) ‖x‖∞ = max{|xj |, j = 1, 2, . . . , n};
(4) M = {1, 2, . . . , m}, N = {1, 2, . . . , n}, e = (1, 1, . . . , 1)T ∈ Rn.

2. Signs and Lemmas

Let

g0(x) = 0,

�(x) = max{gj (x) : j ∈ M ∪ {0}}. (3)

The direction derivative along d ∈ Rn of �(x) is

�′(x; d) = max
j∈I0(x)

{∇gj (x)T d} (4)

where I0(x) = {j : gj (x) = �(x), j ∈ M ∪ {0}}.
Generally speaking, �′(x, d) is not continuous. In Bazaraa and Goode (1982),

Bazaraa et al. proposed a continuous approximation to �′(x; d), which is named
as pseudo-direction derivative of �(x) along d at x :

�∗(x; d) = max
j∈I0(x)

{gj (x)+ ∇gj (x)T d} −�(x). (5)

It is easy to prove that �∗(x; d) is continuous on Rn × Rn.

LEMMA 2.1 Bazaraa and Goode (1982) . ∀x, d ∈ Rn, we have

�∗(x; d) � �′(x; d), (6)

and there exists δ > 0 such that

�∗(x; td) = �′(x; td), ∀t ∈ [0, δ].
LEMMA 2.2 Bazaraa and Goode (1982) . ∀x ∈ Rn, �∗(x, ·) is a convex function
on Rn.

Let

�(x) = max{gj (x), j ∈ M}. (7)

For ∀x, d ∈ Rn, let �∗(x; d) be the first order approximation to �(x + d),
namely

�∗(x; d) = max{gj (x)+ ∇gj (x)T d, j ∈ M}. (8)

For ∀σ > 0, functions �(x, σ ), �0(x, σ ) : Rn × R+ → R are defined as follows

�(x, σ ) = min{�∗(x; d) : ‖d‖ � σ }, (9)

�0(x, σ ) = max{�(x, σ ), 0}. (10)
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REMARK: (9) equals to the following linear programming

LP(x, σ ) : min{z : gj (x)+ ∇gj (x)T d � z, j ∈ m, ‖d‖∞ � σ }.
Denote

θ(x, σ ) = �(x, σ )−�(x), (11)

θ0(x, σ ) = �0(x, σ )−�(x), (12)

F = {x : gj (x) � 0, j ∈ M} = {x : �(x) � 0}, (13)

Fc = {x : �(x) > 0}. (14)

DEFINITION 2.1 Burke and Han (1989) . Mangasarian–Fromotz constraint qual-
ification (MFCQ) is said to be satisfied by g(x) � 0 at x if ∃z ∈ Rn such
that

∇gj (x)T z < 0 ∀j ∈ {j : gj (x) � 0, j ∈ M}.
LEMMA 2.3 Zhou (1997) . ∀x ∈ Fc, if MFCQ is satisfied at x, then θ(x, σ ) < 0,
∀σ > 0.

LEMMA 2.4 Zhou (1997) . �(x, σ ), �0(x, σ ), θ(x, σ ), θ0(x, σ ) are continuous
on Rn × R+.

LEMMA 2.5 Zhou (1997) . ∀x ∈ Fc, if θ(x, σ ) < 0, then θ0(x, σ ) < 0.

3. Algorithm Model

First, we modify the quadratic subproblem of SQP method. Given x ∈ Rn, σ > 0,
D(x, σ, β) is defined as the following set

D(x, σ, β) = {d ∈ Rn : gj (x)+ ∇gj (x)T d � �0(x, σ ), j ∈ m, ‖d‖∞ � β}
where β > σ . If d∗ ∈ Rn is the solution of LP(x, σ ), then d∗ ∈ D(x, σ, β) hence
D(x, σ, β) is nonempty. The quadratic subproblem (2) is replaced by the following
convex programming problem

Q(xk,Hk, σk, βk) min
d∈Rn

∇f (xk)T d + 1
2d

T Hkd

s.t. gj (xk)+ ∇gj (xk)T d � �0(xk, σk), j ∈ M

‖d‖∞ � β

Clearly, by the above statement, the convex programmingQ(xk,Hk, σk, βk) is feas-
ible when σk � βk. And if Hk is positive definite then the solution of Q(xk,Hk, σk,
βk) is unique and bounded. The convex programming problem has the following
properties:



A MODIFIED SQP METHOD WITH NONMONOTONE LINESEARCH TECHNIQUE 205

THEOREM 3.1 Zhou (1997) . Suppose that xk ∈ Rn, 0 < σk < βk andHk ∈ Rn×n
is a symmetric positive definite matrix. If MFCQ is satisfied at xk , then

(1). The convex programming problem Q(xk,Hk, σk, βk) has a unique solu-
tion dk which satisfies K–T conditions, i.e., there exist vectors Uk = (uk1,
uk2, . . . , u

k
m)

T , V k = (vk1, v
k
2, . . . , v

k
n)
T and Lk = (lk1, l

k
2 , . . . , l

k
n) such that

(a). gj (xk)+ ∇gj (xk)T dk � �0(xk, σk), j ∈ m, ‖dk‖∞ � β;
(b). Uk � 0, V k � 0, Lk � 0;
(c). ∇f (xk)+Hkdk + g′(xk)T Uk + V k − Lk = 0;
(d).

∑m
j=1 u

k
j (gj (xk)+ ∇gj (xk)T dk −�0(xk, σ )) = 0,

V kT (dk − βke) = 0, LkT (−dk − βke) = 0;
(2). If dk = 0 is the solution of Q(xk,Hk, σk, βk), then xk is a K–T point of

problem (1).

LEMMA 3.1. ∀x ∈ Fc, 0 < σ � β, if MFCQ is satisfied at x and d ∈ D(x, σ, β),
then �∗(x; d) � θ0(x, σ ) < 0.

LEMMA 3.2. ∀x ∈ F , 0 < σ � β, d ∈ D(x, σ, β), we have �∗(x; d) = 0.

Now we state our algorithm as follows.

Algorithm A:
Initial: Given x0 ∈ Rn, α0 > 0, δ > 0, 0 < σl < σr < β̄, σ0 ∈ [σl, σr],

β0 ∈ [σ0, β̄], 0 < µ < 1
2 , 0 < γ < 1, / is a compact set which consists of

symmetric positive definite matrices, H0 ∈ /. k = 0.
Step 1. Compute �(xk, σk), �0(xk, σk).
Step 2. Let dk be the solution of the convex programming problem Q(xk,Hi, σk,

βk). If dk = 0, then xk is a K–T point of problem (1).
Step 3. If ∇f (xk)T dk +αk�

∗(xk, dk) � −dTk Hkdk , then αk+1 = αk. Otherwise, let

αk+1 = max

{∇f (xk)T dk + dTk Hkdk

−�∗(xk, dk)
, 2αk

}
.

Step 4. If Pαk+1(xk + dk) � max
l=0,1

{Pαk+1(xk−l)} −µdTk Hkdk, let xk+1 = xk + dk and

go to Step 7.
Step 5. Let d̂k be the least norm solution of the following linear equation system:

gj (xk + dk)+ ∇gj (xk)T d = 0, j ∈ I (xk) = {j : j ∈ m,ukj > 0}
and if the above linear equation system is inconsistent or ‖d̂k‖ > ‖dk‖, then
let d̂k = 0.

Step 6. Let xk+1 = xk + tkdk + t2k d̂k, where tk is the largest value of the sequence
{1, γ , γ 2, . . . } such that

Pαk+1(xk + tkdk + t2k d̂k) � max
l=0,1

{Pαk+1(xk−l )} + µtk(∇f (xk)T dk
+ αk+1�

∗(xk; dk)).
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Step 7. Choose Hk+1 ∈ /, σk+1 ∈ [σl, σr ], βk+1 ∈ (σk+1, β̄]. Let k := k + 1, go
to Step 1.

REMARK:.
(1) Hk+1 can be obtained by iterative formula.
(2) The merit function in the algorithm is

Pα(x) = f (x)+ α�(x).

(3) At Step 7, σk, βk can be obtained by iterative formula hence Step 7 is
allowed to use to include trust region strategy.

(4) From the choice of αk, we know

P ′
αk
(xk; dk) = ∇f (xk)T dk + αk�

′(xk; dk)
� ∇f (xk)T dk + α�∗(xk; dk)
� −dTk Hkdk
< 0.

thereby the choice of step-size is implementable.
(5) In Zhou’s algorithm, the step-size is obtained by exact line search. In this

paper, the step-size is obtained by Armijo line search, which is imple-
mented easily. Moreover, we also use the nonmonotone technique in our
algorithm.

4. Global Convergence

In the sequel analysis, we always assume that the following conditions hold.

Assumption A:
(1) f , gj , j ∈ M are continuously differentiable functions;
(2) {xk} is a bounded sequence;
(3) There exist 0 < b1 � b2 < +∞ such that

b1‖y‖2 � yT Hky � b2‖y‖2, ∀y ∈ Rn, k = 1, 2, . . .

holds.

THEOREM 4.1 Zhou (1997) . Assume that MFCQ is satisfied at x0 ∈ Rn. Let
σl > 0 and F = {x : g(x) � 0}, then there exists a neighborhood N(x0) of x0 such
that

(1) MFCQ is satisfied at any point in N(x0);
(2) If x0 ∈ F , then �0(x, σ ) = 0, for ∀x ∈ N(x0) and σ � σl, and

θ0(x, σ )

�∗(x; d) � 1, ∀x ∈ N(x0)\F, σ � σl,

where d is the solution of Q(x,H, σ, β);
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(3) If x0 ∈ F , then

sup




m∑
j=1

uj : H ∈ /, x ∈ N(x0), σ ∈ [σl, σr ], βın(σ, β̄]

 < ∞,

where / ⊂ Rn×n is a compact set which consists of symmetric positive
definite matrices and 0 < σl < σr < β̄.

COROLLARY 4.1. Suppose that x0 ∈ Rn satisfies g(x0) � 0 and MFCQ holds at
x0. Let 0 < σl < σr < β̄ and / be a compact set consisting of symmetric positive
definite matrices, then there exists a neighborhood N(x0) of x0 and a constant
number K � 0 such that

0 �
∇f (x)T d + 1

2d
T Hd

−�∗(x; d) �
(
∑m

j=1 uj)θ
0(x, σ )

�∗(x; d) � K

where d is the solution ofQ(x,H, σ, β), ∀(x, σ, β,H) ∈ N(x0)×6(σl, σr, β̄)×/,
where 6(σl, σr, β̄) = {(σ, beta) : σ ∈ [σl, σr], β ∈ (σ, β̄]}.
LEMMA 4.1 Zhou (1997) . If MFCQ holds, suppose that xk → x̄, Hk → H̄ ,
σk → σ̄ , βk → β̄, then dk → d̄ where dk is the solution of Q(xk,Hk, σk, βk) and
d̄ is the solution of Q(x̄, H̄ , σ̄ , β̄).

LEMMA 4.2. Suppose that {xk} is an infinite sequence generated by Algorithm
A. If αk → +∞, as k → ∞, then any cluster point x̄ of {xk} satisfies the constraint
conditions of (1), i.e., g(x̄) � 0.

Proof. If x̄ does not satisfy the constraint condition of (1), from Lemma 2.3 and
Lemma 2.5, we know that θ0(x̄, σ ) < 0, ∀σ > 0.

Because x̄ is a cluster point of {xk}, there exists a subsequence {xki } such that

xki → x̄, i → ∞.

Without loss of generality, we can assume that dki → d̄ Hki → H̄ σki → σ̄

βki → β̄, then from Lemma 4.1 we know that d̄ is the solution of Q(d̄, H̄ , ᾱ, β̄).
Lemma 3.1 implies that �∗(x̄; d̄) � θ0(x̄, σ ) < 0.

Because �∗(x; d) is continuous in Rn × Rn,

�∗(xki ; dki ) → �∗(x̄; d̄), i → ∞.

On the other hand, by αk → +∞ and updating rule for αk, we know that

∇f (xk)T dk + dTk Hkdk

−�∗(xk; dk) → +∞, k → ∞. (15)

Assumption (1) and the computation of dk imply that the numerator of (15) is
bounded, so �∗(xk; dk) → 0, as k → ∞. We obtain a contradiction, which shows
that the lemma is true. �
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If MFCQ is satisfied at any point of Rn, from Lemma 4.2 and Corollary 4.1 we
know that αk is a constant when k is sufficiently large. So without lose of generality,
we can assume in the sequel analysis that αk = α > 0, ∀k.

LEMMA 4.3. If xk is not a K–T point of (1), then there exists a tk > 0 such that

Pα(xk + tkdk + t2k d̂k) � Pα(xk)+ µtk(∇f (xk)T dk + α�∗(xk; dk))

Proof. Let

81 = f (xk + tdk + t2d̂k)− f (xk)

and

82 = �(xk + tdk + t2d̂k)−�(xk),

then Pα(xk + tdk + t2d̂k)− Pα(xk) = 81 + α82.

Note that for sufficiently small t > 0 and ∀d ∈ Rn, if j �∈ I0(xk), we have that

gj (xk)+ t∇gj (xk)T dk � max
j∈I0(xk)

{0, gj (xk)+ ∇gj (xk)T dk}.

Hence for sufficiently small t > 0, we have

82 = max
j∈M

{0, gj (xk + tdk + t2d̂k)} −�(xk)

� max
j∈M

{0, gj (xk)+ t∇gj (xk)T dk} −�(xk)+ o(t)

= max
j∈I0(xk)

{0, gj (xk)+ t∇gj (xk)T dk} −�(xk)+ o(t)

= �∗(xk; tdk)+ o(t)

� t�∗(xk; dk)+ o(t),

(16)

and

81 = f (xk + tdk + t2d̂k)− f (xk)

= t∇f (xk)T dk + o(t).
(17)

(16) and (17) imply that

Pα(xk + tdk + t2d̂k)− Pα(xk) � t (∇f (xk)T dk + α�∗(xk; dk))+ o(t). (18)

Note that Step 3 implies

∇f (xk)T dk + α�∗(xk; dk) � −dTk Hkdk. (19)

On the other hand, it follows from Theorem 3.1 that

dk �= 0. (20)
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By (18), (19), (20) and Assumption (3), we have that there exists tk > 0 such that

Pα(xk + tkdk + t2k d̂k) � Pα(xk)+ µtk(∇f (xk)T dk + α�∗(xk; dk)).
So the conclusion holds. �

Lemma 4.3 says that Algorithm A is well defined. Now we prove that Algorithm
A is globally convergent. First we introduce two lemmas.

LEMMA 4.4. Sequences {tkdk} and {xk+1 − xk} converge to 0.
Proof. Let l(k) be integer number such that k − 1 � l(k) � k and

Pα(xl(k)) = max
l=0,1

{pα(xk−l)}.

From Lemma 4.3, we obtain

Pα(xl(k+1)) = max
l=0,1

{Pα(xk+1−l)}
� max{Pα(xl(k)), Pα(xk+1)}
= Pα(xl(k)),

(21)

i.e., sequence {Pα(xl(k))} is a non-increasing sequence. Therefore, by Step 3 and
Step 6, we have

Pα(xl(k)) � max
l=0,1

{Pα(xl(k)−1−l)} + µtl(k)−1(∇f (xl(k)−1)
T dl(k)−1

+α�(xl(k)−1; dl(k)−1))

� Pα(xl(l(k)−1))− µtl(k)−1d
T
l(k)−1Hl(k)−1dl(k)−1.

(22)

From (22) and Assumption (1), we obtain

tl(k)−1dl(k)−1 → 0, k → ∞. (23)

Since ‖d̂k‖ � ‖dk‖, then

‖xl(k) − xl(k)−1‖ → 0, k → 0. (24)

Now set l̂(k) = l(k + 3) and show, by induction, that for any j � 1,

lim
k→∞

tl̂(k)−jdl̂(k)−j = 0, (25)

lim
k→∞Pα(xl̂(k)−j ) = lim

k→∞Pα(xl(k)). (26)

In view of (21)–(24) and the fact {l̂(k)} ⊂ {l(k)}, we have that

|Pα(xl̂(k)−1)− Pα(xl(k)−1)|
� |Pα(xl̂(k)−1)− Pα(xl̂(k))| + |Pα(xl̂(k))− Pα(xl(k)−1)| → 0, k → ∞.
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So (25) and (26) hold for j = 1. Assume that (25) and (26) hold for a given j . By
(22), we have that

Pα(xl̂(k)−j ) � Pα(xl(l̂(k)−j−1))− µtl̂(k)−j−1d
T

l̂(k)−j−1
Hl̂(k)−j−1dl̂(k)−j−1.

By induction assumptions, we know that

lim
k→∞Pα(xl̂(k)−j ) = lim

k→∞Pα(xl(k)) = lim
k→∞Pα(xl(l̂(k)−j−1)).

So

tl̂(k)−j−1dl̂(k)−j−1 → 0, k → ∞,

and

‖xl̂(k)−j − xl̂(k)−j−1‖ → 0, k → ∞,

and furthermore

lim
k→∞

Pα(xl̂(k)−j−1) = lim
k→∞

Pα(xl̂(k)−j ) = lim
k→∞

Pα(xl(k)).

Therefore (25) and (26) hold for j + 1.
For any j , since l̂(k)− k − 1 = l(k + 3)− k − 1 � 2, and

xk+1 = xl̂(k) −
l̂(k)−k−1∑
j=1

[tl̂(k)−jdl̂(k)−j + t2
l̂(k)−j d̂l̂(k)−j ],

by (25) and (26),

‖xk+1 − xl̂(k)‖ → 0, |Pα(xk+1)− Pα(xl̂(k))| → 0, k → ∞.

Consequently

lim
k→∞

Pα(xk+1) = lim
k→∞

Pα(xl̂(k)) = lim
k→∞

Pα(xl(k)).

Note that

Pα(xk+1) � Pα(xl(k))− µtkd
T
k Hkdk,

we obtain

tkdk → 0, ‖xk+1 − xk‖ → 0, k → ∞. �
LEMMA 4.5. Let sequences {xk} and {dk} be generated by Algorithm A, then
dk → 0.
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Proof. From Lemma 4.4, we know that

tkdk → 0, (k → ∞). (27)

Now we prove that dk → 0. Conversely, if dk �→ 0, then there exit a sub-
sequence {di} of {dk} and a positive constant number ε such that

‖di‖ � ε, ∀i. (28)

Now we prove that there exists t ′ > 0 such that

ti � t ′, ∀i. (29)

Assume that (29) does not hold, then there exists a subsequence of {ti}(without
loss of generality, we can assume that the subsequence is {ti} itself) such that

ti → 0, i → ∞.

From Step 6, we have that

Pα

(
xi + ti

η
di + t2i

η
d̂i

)

> max
l=0,1

{Pα(xi−l )} + µ
ti

η
(∇f (xi)T di + α�∗(x;i ; di)) (30)

� Pα(xi)+ µ
ti

η
(∇f (xi)T di + α�∗(x;i ; di)).

By (18), ti → 0 and (30), we know that for i sufficiently large

ti

η
(∇f (xi)T di + α�∗(xi; di))+ o

(
ti

η

)

� Pα

(
xi + ti

η
di + t2i

η
d̂i

)
− Pα(xi) (31)

� µ
ti

η
(∇f (xi)T di + α�∗(xi; di)), (32)

i.e.,

(1 − µ)
ti

η

(∇f (xi)T di + α�∗(xi; di)
) + o

(
ti

η

)
� 0.

It follows from the choice of α, (28) and Assumption A (3) that

−(1 − µ)b1ε
2 + o

(
ti

η

)
/
ti

η
� 0.

Let i → ∞, and note that ti → 0, we obtain that

−(1 − µ)b1ε
2 � 0.
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This contradicts 0 < µ < 1
2 . So (29) holds. (28) and (29) imply that tkdk �→ 0.

This contradicts to (27). The contradiction shows that the lemma is true. �
Combining Lemma 4.5, Lemma 4.1 and Theorem 3.1, we obtain

THEOREM 4.2. If MFCQ holds at any x ∈ Rn, Algorithm A either stops at a K–T
point of problem (1) or generates an infinite sequence {xk} whose cluster points are
K–T points of problem (1).

5. Superlinear Convergence

In this section, we prove that the algorithm is convergent superlinearly. For the
analysis of the superlinear convergence of the algorithm, we need the following
assumptions.

Assumption B:
(1′). Functions f , gj , j ∈ M are at least twice order continuously differentiable;
(4). Strong twice order sufficient conditions holds, i.e.,

dT∇2
xxL(x

∗, λ∗)d > 0, ∀d ∈ {d|d �= 0, dT∇gj (x∗) = 0, j ∈ Î (x∗)}
where

L(x, λ) = f (x)+
m∑
j=1

λjgj (x), Î (x
∗) = {j ∈ I0(x

∗), λ∗
j > 0}

and (x∗, λ∗) is a K–T pair of problem (1);
(5). At x∗, strict complementarity slackness and linear independence of the

gradients of the active constraints hold;
(6). Matrices Hk, k = 1, 2, . . . are symmetric positive definite and satisfy the

following condition

lim
k→∞

‖(Hk − ∇2
xxL(x

∗, λ∗))d‖
‖dk‖ = 0.

From the Assumption (1′) (2)–(6), we have the following lemma which is sim-
ilar to Robinson (1982) and Bonnans and Launay (1995).

LEMMA 5.1. Sequence {xk} converges to the solution x∗ of problem (1).

From Lemma 5.1 and Lemma 4.5, we know that ‖dk‖ → 0. So the constraint
condition ‖d‖∞ � βk inQ(xk,Hk, σk, βk) is redundant when k is sufficiently large.
Theorem 4.1 (2) implies that �(xk, σk) = 0 for k sufficiently large. So the sub-
problem Q(xk,Hk, σk, βk) is equivalent to the following quadratic programming
subproblem when k is sufficiently large.

min
d∈Rn ∇f (xk)T d + 1

2d
THkd

s.t. gj (xk)+ ∇gj (xk)T d � 0, j ∈ M
(33)
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LEMMA 5.2. (dk, λk) → (0, λ∗), where (x∗, λ∗) is a K–T pair of problem (1) and
(dk, λk) is the K–T pair of the above quadratic programming subproblem.

Proof. It is easy to verify. �
From Lemma 5.2 and the statements above, we have

Uk → λ∗, k → ∞.

LEMMA 5.3.

‖d̂k‖ = O(‖dk‖2) ∀k sufficiently large.

Proof. It is similar to Proposition 4.1 in De Q. Pantoja and Mayne (1991). �
LEMMA 5.4. Suppose that {xk} is an infinite sequence generated by algorithm A,
If Assumption (1′) and (2)–(6), then tk = 1, for all k sufficiently large.

Proof. From Lemma 5.3 and ‖dk‖ → 0, as k → ∞, we know that for all k
sufficiently large

‖d̂k‖ < ‖dk‖.
Now we prove that the step-size tk = 1 for all k sufficiently large. First we need

to prove

Pα(xk + dk + d̂k)− Pα(xk) � µ(∇f (xk)T dk + α�∗(xk; dk)). (34)

From Assumption B(5), the gradients of the active constraints are linearly inde-
pendent. Hence for all k sufficiently large d̂k �= 0 .

Now we prove that for all k sufficiently large, (34) holds. We need only to prove

Tk = Pα(xk + dk + d̂k)− Pα(xk)− µ(∇f (xk)T dk + α�∗(xk; dk)) � 0. (35)

Since ‖dk‖ → 0 as k → ∞ and Lemma 5.3, then

Pα(xk + dk + d̂k)− Pα(xk)

�∇f (xk)T dk+α�∗(xk; dk)+∇f (xk)T d̂k + 1

2
dTk ∇2

xxf (xk)dk+o(‖dk‖2).

From Lemma 5.1 and the statement before Lemma 5.1, we have that

∇f (xk) = −Hkdk − g′(xk)T Uk.

From the boundness of Hk, the definition of d̂k and Lemma 5.3, we know

∇f (xk)T d̂k = UkT g(xk + dk)+ o(‖dk‖2).
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Note that

u
j

k(gj (xk)+ ∇gj (xk)T dk) = 0, ∀j ∈ m,

and

∇f (xk)T dk + α�∗(xk; dk) � −dTk Hkdk,

we have

Tk �
(

1

2
− µ

)
(∇f (xk)T dk + α�∗(xk; dk))

+ 1

2
dTk (∇2

xxL(xk, U
k)−Hk)dk + o(‖dk‖2)

� −
(

1

2
− µ

)
b1‖dk‖2 + 1

2
dTk (L(xk, U

k)− L(x∗, λ∗))dk

+ 1

2
dTk (L(x

∗, λ∗)−Hk)dk + o(‖dk‖2).

Since xk → x∗, Uk → λ∗ and Assumption A (2), then

dTk (L(xk, U
k)− L(x∗, λ∗))dk = o(‖dk‖2).

Assumption B (6) implies that

dTk (L(x
∗, λ∗)−Hk)dk = o(‖dk‖2).

Therefore when k is sufficiently large

Tk � −
(

1

2
− u

)
b1‖dk‖2 + o

(‖dk‖2
)

� 0.

Hence for all k sufficiently large, (35) holds.

From (34) and Step 6, we obtain

Pα(xk + dk + d̂k)− max
l=0,1

{Pα(xk−l) � Pα(xk + dk + d̂k)− Pα(xk)

� µ(∇f (xk)T dk + α�∗(xk; dk)).
(36)

Hence tk = 1 for k sufficiently large. �
From Lemma 5.4 and the definition of the algorithm, we know that for all k

sufficiently large, either xk+1 = xk + dk or xk+1 = xk + dk + d̂k .

THEOREM 5.1. If the conditions in Lemma 5.4 hold, then {xk} converges to x∗
superlinearly, i.e.,

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0.



A MODIFIED SQP METHOD WITH NONMONOTONE LINESEARCH TECHNIQUE 215

Proof. By assumptions and the results in Boggs et al. (1982), we have

lim
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖ = 0.

Since

‖xk + dk + d̂k − x∗‖
‖xk − x∗‖ � ‖xk + dk − x∗‖

‖xk − x∗‖ + ‖dk‖
‖xk − x∗‖ · ‖d̂k‖

‖dk‖ ,

let k → ∞, note that ‖dk‖
‖xk−x∗‖ → 1 and ‖d̂k‖

‖dk‖ → 0, then

‖xk + dk + d̂k − x∗‖
‖xk − x∗‖ → 0.

Since for k sufficiently large, either xk+1 = xk + dk or xk+1 = xk + dk + d̂k, so

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0. �

Now we state another principal result. It shows that the linear equation system
in Step 5 needs only to be solved in finite number of iterates. This is the main
reason that we introduce the nonmonotone line search technique.

THEOREM 5.2. When k is sufficient large, Step 4 in Algorithm A is always satis-
fied, hence Step 5 and Step 6 will not be executed.

Proof. We need only to prove that for sufficiently large k we have

Pα(xk + dk)− µdTk Hkdk � Pα(xk−1). (37)

Now we assume that k is so large that dk is calculated by (33) and tk = 1, so

gj (xk + dk) = gj (xk)+ ∇gj (xk)T dk +O(‖dk‖2)

� O(‖dk‖2).

Since

lim
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖ = 0,

then

Pα(xk + dk) = f (xk + dk)+ α max
j∈M∪{0}

{gj (xk + dk)}
� f (x∗ + xk + dk − x∗)+O(‖dk‖2)

= f (x∗)+ ∇f (x∗)T (xk + dk − x∗)+O(‖xk + dk − x∗‖2)

+O(‖dk‖2)

= Pα(x
∗)− ∑

j∈Î (x∗) λ
∗
j∇gj (x∗)T (xk + dk − x∗)

+o(‖xk − x∗‖2)+O(‖dk‖2).
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Since Uk → λ∗, then Î (x∗) ⊆ I (xk). So for j ∈ Î (x∗)

O(‖dk‖2) = gj (xk)+ ∇gj (xk)T dk +O(‖dk‖2)

= gj (xk + dk)

= gj (x
∗ + xk + dk − x∗)

= gj (x
∗)+ ∇gj (x∗)T (xk + dk − x∗)+O(‖xk + dk − x∗‖2)

= ∇gj (x∗)T (xk + dk − x∗)+ o(‖xk − x∗‖2).

By Theorem 5.1 and note that

lim
k→∞

‖dk‖
‖xk − x∗‖ = 1,

we obtain

Pα(xk + dk)− µdTk Hkdk = Pα(x
∗)+ o(‖xk − x∗‖2)+O(‖dk‖2)

= Pα(x
∗)+O(‖xk − x∗‖2)

= Pα(x
∗)+ o(‖xk−1 − x∗‖2)

� Pα(xk−1),

where the last inequality follows from Lemma 1 in Chamberlin et al. (1982). �

6. Some Discussions and Numerical Examples

In this section, we give some numerical examples to show the success of the
proposed method. Updating of Hk is done by BFGS formula, i.e.,

Hk+1 =


Hk, if sTk yk � 0;
Hk + yky

T
k

yTk sk
− Hksks

T
k Hk

sTk Hksk
, if sTk yk > 0,

where sk = xk+1−xk , yk = (∇f (xk+1)−∇g(xk+1)U
k+1)−(∇f (xk)−∇g(xk)Uk),

and Uk is defined as in Theorem 3.1. The stop criteria is ‖dk‖ � 10−6. And the
algorithm parameters were set as follows: α0 = 100, δ = 1, σl = 1, σr = 2, β̄ = 3,
µ = 0.25, γ = 0.5 and H0 = I ∈ Rn×n. The program is written in MATLAB and
call for the inner function QP in matlab to solve the quadratic subproblems.

EXAMPLE 1.

min f (x) = x − 1
2 + 1

2 cos2 x,

s.t. x � 0.
x0 = 2, x∗ = 0, f (x∗) = 0, iterate = 2.
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EXAMPLE 2.

min f (x) = ∑4
i=1 x

2
i ,

s.t. 6 − ∑4
i=1 x

2
i � 0.

x0 = (2, 2, 2, 2)T , x∗ = (1.224745, 1.224745, 1.224745, 1.224745)T ,
f (x∗) = 9, iterate = 7.

EXAMPLE 3.

min f (x) = ∑3
i=1 x

2
i x

2
i+1 + x1x4,

s.t. 4 − ∑4
i=1 xi � 0,

1 − ∑4
i=1(−1)i+1xi � 0.

x0 = (2.5, 1.5, 0, 0)T ,
x∗ = (1.240023, 0.753253, 1.259977, 0.746746)T ,
f (x∗) = 3.515915, iterate = 6.

EXAMPLE 4.

min f (x) = 4
3(x

2
1 − x1x2 + x2

2)
3
4 − x3,

s.t. x � 0, x3 � 2.
x0 = (0, 0.25, 0)T , x∗ = (0, 0, 2)T , f (x∗) = −2, iterate = 8.

From the above, we know that the algorithm can solve these problems. Com-
paring with the results in Zhou (1997), the computation in each iteration in this
paper is less than that in Zhou’s method since they use exact line search to obtain
step-size. Because we use nonmonotone line search technique in our method, the
iterate number for some problems is less than that in Zhou (1997).

Although the method in this paper is proposed for inequality constrained prob-
lem, we can apply this method to solve general optimization problem. If an equality
constraint h(x) = 0 exists in the original problem, it can be handled as two
corresponding inequality h(x) � 0 and h(x) � 0, and we can apply the above
algorithm.

The method proposed in this paper has advantage over traditional SQP method.
The following example demonstrates situations in which the algorithm proposed in
this paper succeeds while the SQP method developed by Wilson, Han and Powell
can fail if the initial value of x is set to 3.

min x

s.t. x � 1,
x2 � 0.
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